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Abstract A new hypothesis testing of equality of mean vectors in two populations
using D2 statistic for multivariate repeated measures data on q response variables at
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1 Introduction

Multivariate hierarchical data, multivariate multilevel data, multivariate repeatedmea-
sures data are datawhere the observations are frequently correlated. Uncorrelated error
is often a violated assumption of the statistical procedures in these kinds of data. Viola-
tions often occurwhen the error terms are not independent, but correlated. For example,
analysis of multivariate repeated measures data needs to take into account the corre-
lations among the measurements of q different variables as well as the correlations
among measurements taken at p different sites or time points.

The classical linear models for the multivariate data with a vector valued random
variable (response vector) can be extended to a multivariate repeated measures data
or doubly multivariate data with a matrix valued random variable X . For example, a
simple location model for doubly multivariate data can be presented as

X = M + E, (1)

where M is a q × p location center matrix, which may depend on the explaining
variables, and E is the q× p error matrix. The independent and identically distributed
q× pmatrix observations X1, . . . , Xn may then come from amultivariate hierarchical
model with two hierarchy levels (n classes in upper level, p individuals in the lower
level with q response variables measured on each individual). Students in classes,
patients in hospitals and repeated measurements on subjects are examples of these
models, for more examples see Beacon and Thompson (1996) or Goldstein (2011).
In the multivariate repeated measures case, one has n individuals, q variables and
p repetitions for each variable (see Roy 2006; Roy and Fonseca 2012; Roy et al.
2015).

An example of multivariate data with structure defined by (1) is a study of cerebral
metabolism in epileptic patients by Sperling et al. (1990). In this study, the metabolic
rate of glucose at 16 locations in the brain by positron emission tomography (PET)
scans was measured. These 16 locations include 8 regions of interest: the first five,
frontal, sensorimotor, temporal, parietal and occipital are known as cortical regions,
and the last three, caudate nucleus, lenticular nucleus and thalamus are known as sub-
cortical regions. Sperling et al. (1990) measured the right-sided (R) and the left-sided
(L) metabolic rates in each region of interest. Clearly, the data are doubly multi-
variate with q = 5 and p = 2, and q = 3 and p = 2 in cortical and subcortical
regions, respectively. The sample consisted of 18 Normal control subjects, 8 patients
with a Right brain hemisphere focus of the epilepsy and 8 patients with a Left brain
hemisphere focus of the epilepsy. We use part of these data as an illustration of our
method, namely Normal control and Right hemisphere focus groups. The metabolic
rates for cortical region, measured in mg/100g/min, for all three groups are shown
in Table 2 in Sperling et al. (1990) and reproduced in Table S1 in the online sup-
plementary material for the Normal control and Right hemisphere focus groups. The
metabolic rates for subcortical region, measured in mg/100g/min, for all three groups
are shown in Table 3 in Sperling et al. (1990) and reproduced in Table S2 in the
online supplementary material for the Normal control and Right hemisphere focus
groups.
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Classical multivariate analysis assumes both unstructured mean and unstructured
variance–covariancematrixΣ = Cov(vec(E)),where the number of unknownparam-
eters to be estimated is r = pq(pq + 1)/2, which can be large for arbitrary values of
p or q. However, for doubly multivariate data one may assume a separable covariance
structure, i.e.,

Σ = Σ1 ⊗ Σ2, (2)

where the p × p matrix Σ1 is the variance–covariance matrix of the p sites or time
points (the same for all variables/locations) and the q × q matrix Σ2 is the variance–
covariance matrix of the q variables or locations (the same for all sites/time points).
Here ⊗ represents the Kronecker product. This choice (2) implies the assumption
of separability of the total variability into two sources originated by the within- and
between-variable variation. There are many articles which work with the models (1),
but only few of them consider it in conjunction with the separable error term (e.g.,
Viroli 2012). The number of unknown parameters in the separable structure is only
s = p(p + 1)/2 + q(q + 1)/2, which can be much less than r since the difference
r − s is quadratic function in p or q with the other dimension fixed, and biquadratic
one for p = q.

If the p columns of X are exchangeable, then E(X) = M = ξ1′
p (constant q × 1

mean vector structure over time), and the p columns of E are also exchangeable [see,
e.g., Arnold (1973, 1979) and Roy et al. (2015)]. Thus, the number of free parameters
in themean vector is only q, and the block exchangeable or block compound symmetry
(BCS) covariance structure of vec(E) is then

Σ =

⎛
⎜⎜⎜⎝

Σ0 Σ1 . . . Σ1
Σ1 Σ0 . . . Σ1
...

...
. . .

...

Σ1 Σ1 . . . Σ0

⎞
⎟⎟⎟⎠

= I p ⊗ (Σ0 − Σ1) + J p ⊗ Σ1, (3)

where each column of E has the variance–covariance matrixΣ0 and any two different
columns have the covariance matrix Σ1. Here I p is the p × p identity matrix, J p =
1p1′

p, and 1p is the p × 1 vector of ones. The pattern of the block exchangeable
covariance structure arises from imposing symmetry on blocks of variables. From the
definition of Σ , it is clear that p ≥ 2 is needed for the block exchangeable covariance
structure.We assume that the q×q matrixΣ0 is positive definite (denoted byΣ0 > 0),
and the q×q symmetricmatrixΣ1 must satisfyΣ0−Σ1 > 0 andΣ0+(p−1)Σ1 > 0
in order to guarantee the positive definiteness of Σ [for a proof, see Lemma 2.1 in
Roy and Leiva (2011)].

However, one can also be faced situations when exchangeability of error terms does
not go together with exchangeability of means, see Wilks (1946). We can see it at the
above-cited example of cerebral metabolism data as well, since one cannot expect
the same metabolic activity at different sides of the brain. That is why we choose to
assume an unstructured mean M in the basic model. Symmetry is imposed on X for
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considerations that are external to the data—imposed by external considerations. So,
the covariance matrix is tied to the same invariance at different sides of the brain, that
is why block exchangeable covariance structure is a direct consequence.

BCScovariance structuremaybe a realistic assumption inmanydoublymultivariate
data. It has been studied most extensively by Arnold (1976) and Szatrowski (1976).
There are many articles which work with themodels (1), but only few of them consider
it in conjunction with the block exchangeable error term (Arnold 1979). This structure
has the desirable feature that it needs to estimate a smaller set of unknown parameters,
which are q(q + 1) instead of r . Moreover, this number does not even depend on
p (as is the case of both r and s). This means that one can get more information,
e.g., by increasing the number of repeated measurements p, without estimating more
parameters. Also, for this covariance structure the repeated measurements over time
need not be equally spaced.

The aim of the paper is to derive the basic tests for the mean: one-sample as well as
for two-sample cases under the assumption of block exchangeable covariance matrix
for the data. For two-sample cases, we assume the equality of block exchangeable
covariance matrices in the two populations. Hypothesis testing of block exchangeable
structure for one population was developed by Roy and Leiva (2011) and then very
recently by Coelho and Roy (2017). There are few methods proposed in the literature
for testing either single mean vector or equality of two (or more) mean vectors for
multivariate repeatedmeasures populationswith block exchangeable covariance struc-
ture. However, they are based on different principles (see later) and lead to different
statistics which are either approximate or still difficult to handle (e.g., product of beta
random variables). Since our method provides an exact (and effectively computable)
distribution of the test statistic under normality, it turns out to be more effective than
the previous ones, especially for small sample sizes.

One may also use the random effects models instead of introducing new mean
parameters for each site or time point. This would limit the number of parameters, and
similar hypotheses could be tested based on them, however, under other assumptions.
Lin and Wang (2013) proposed a multivariate skew-normal linear mixed model by
assuming a multivariate skew-normal distribution for the random effects and a multi-
variate normal distribution for the random errors for skewed distribution. They used
a continuous-time damped exponential correlation structure to address the within-
subject autocorrelation among irregularly observed measures. Lin and Wang (2013)
developed a computationally tractable alternative expectation–conditional maximiza-
tion algorithm for carrying out the maximum likelihood estimation. Wang et al
(2015) extended multivariate-t linear mixed model with left- and/or right-censored
responses embodied within multivariate repeated measurements collected at (possi-
bly) irregularly occasions in the presence of potential outliers or heavy-tailed noises
simultaneously.

Problems using the doubly multivariate data in paired sample (unstructured) mean
testing using theBCS covariance structurewas considered byRoy et al. (2015) in small
sample case. However, they did not discuss the testing of mean vectors in two inde-
pendent populations. Testing procedures for both structured and unstructured mean
are developed in Sect. 2. They are applied to two medical data sets in Sect. 3. Some
concluding remarks are given in Sect. 4.
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2 Tests for the mean

Hypothesis testing of mean vector in a doubly multivariate framework is much more
difficult than in a multivariate framework as the number of parameters increases with
the increase of p. In this article, we develop a two-sample test procedure for the mean
vector μ in a doubly multivariate setup using BCS covariance structure as defined
in (3). However, before developing two-sample test, it is necessary to develop a one-
sample test of mean vector in the same setup. One-sample test is developed in Sect. 2.1
and two-sample test in Sect. 2.3, respectively.

We assume x = vec(X) =
(
x∗
1
′, . . . , x∗

p
′)′ ∼ Npq(μ,Σ), where E(x) = μ =

vec(M) =
(
μ′
1, . . . ,μ

′
p

)′
and Cov(x) = Σ as defined in (3).

2.1 One-sample test

Let x1, . . . , xn be random samples from Npq (μ,Σ); xi =
(
x∗
i,1

′, . . . , x∗
i,p

′)′ ∀ i =
1, . . . , n, and x be the sample mean of x1, . . . , xn . We test the following hypothesis

H0 : μ = μ0 against H1 : μ �=μ0. (4)

Let X˜ = (x1, . . . , xn) =
(
X∗•1
˜

′, . . . , X∗•p
˜

′
)′

be the (pq × n)-dimensional data

matrix, where X∗•i˜
, i = 1, . . . , p is the data matrix at the i th site or time point.

Let P A = A(A′A)+A′ be the orthogonal projector onto the column space of
any matrix A, and QA = In − P A be the orthogonal projector on its orthogonal
complement, where (A′A)+ is the Moore–Penrose inverse of (A′A). For the sake of
simplification, the matrix P Jn and QJn will be denoted by Pn and Qn , respectively.

We can define the (pq × pq)-dimensional sample variance–covariance matrix S
as follows

S = 1

n − 1
X˜QnX˜

′ =

⎛
⎜⎜⎜⎝

S11 S12 . . . S1p
S21 S22 . . . S2p
...

...
. . .

...

Sp1 Sp2 . . . Spp

⎞
⎟⎟⎟⎠,

where Si j = 1
n−1X

∗•i˜
QnX

∗• j
˜

′; i, j = 1, . . . , p. The matrix S is an unbiased estimator

of Σ , and it is known that S has the Wishart distribution with n − 1 degrees of

freedom and covariance matrix 1
n−1Σ , i.e., S ∼ Wpq

(
n − 1, 1

n−1Σ
)
. Therefore,

E
[
Si j
] = Σ1−δi j , where δi j = 1 if i = j , and δi j = 0 if i �= j . It is natural to use the

following unbiased estimators of the variance and covariance matrices Σ0 and Σ1:

Σ̂0 = 1

p

p∑
i=1

Si i , and Σ̂1 = 1

p(p − 1)

p∑
i=1

p∑
j=1

i �= j

Si j .
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Then the estimator Σ̂ = I p ⊗ (Σ̂0 − Σ̂1
)+ J p ⊗ Σ̂1 could be written as the sum

of two orthogonal parts

Σ̂ = P p ⊗ �̂2 + Q p ⊗ �̂1,

where �̂1 = Σ̂0 − Σ̂1 and �̂2 = Σ̂0 + (p − 1)Σ̂1. Since P p Q p = 0, the inverse of

Σ̂ can be written as Σ̂
−1 = P p ⊗ �̂

−1
2 + Q p ⊗ �̂

−1
1 . Then for testing Hypothesis

(4), we define the test statistic

D2 = n (x − μ0)
′ [P p ⊗ �̂

−1
2 + Q p ⊗ �̂

−1
1

]
(x − μ0). (5)

The distribution of this D2 test statistic is not Hotelling’s T 2, since the estimator Σ̂

does not follow theWishart distribution. We derive the distribution of this test statistic
in Sect. 2.1.2. In the next section, we present the test statistic presented in Roy et al.
(2015) and show that their test statistic has smaller power than the one presented in
this paper.

2.1.1 Similar solution of the problem via orthogonalization

Let Z = H p ⊗ Iq be any matrix such that H p is a (p × p) orthogonal matrix with
the first row proportional to a vector of 1’s. Then, the canonical transformation

y = (
H p ⊗ Iq

)
x

of the data is used.
Therefore, y = (

y1
′, . . . , yp ′)′ = Zx ∼ Npq (ν,�)where ν = Zμ, and according

to Roy and Fonseca (2012)

� = ZΣZ′ =
(

�2 0
0 I p−1 ⊗ �1

)
.

It follows that the q × 1 component vectors yi , i = 1, . . . , p, are independent. Even

though the estimator �̂ =
(

�̂2 0
0 I p−1⊗�̂1

)
does not have a Wishart distribution, the

following theorem holds:

Theorem 1 Distributions of (n − 1)(p − 1)�̂1 and (n − 1)�̂2 are independent, and

(n − 1)(p − 1)�̂1 ∼ Wq ((n − 1)(p − 1),�1), and

(n − 1)�̂2 ∼ Wq (n − 1,�2).

For the proof of the above theorem, see Theorem 1 in Roy et al. (2015). For testing
Hypothesis (4), they derived a similar to Hotelling’s T 2 test statistic named Block T 2

BT 2 = n (x − μ0)
′ Z′

(
�̂

−1
2 0

0 P p−1⊗�̂
−1
1

)
Z (x − μ0) ∼ T 2

q,n−1 ⊕ T 2
q,(n−1)(p−1),

(6)
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where ⊕ denotes the convolution operation and T 2·,· denotes Hotelling T 2 distribution
with appropriate parameters.

However, such a test statistic is not independent of the choice of the orthogonal
matrix H p which is involved in Z. Even if for a given data matrix X the distribution
of BT 2 is the same for two different H1

p and H2
p, it can be easily verified that the

particular value of the test statistic is not the same with the exception of p = 2. As
a consequence, different power can be achieved by using different H p’s. In order to
achieve the highest power, one should use the matrix H p which gives the highest
value of BT 2. Unfortunately, such H p depends on the data observed. However, the
following lemma shows a connection between the maximum of BT 2 and D2.

Lemma 1 It holds
max
Hp

BT 2 ≤ D2,

where the maximization is over all orthogonal matrices H p with the first row propor-
tional to a vector of 1’s.

Proof Let us consider the given fixed data matrix X and let us write H p =(
h1, H ′

2,p

)′
, where h1 = 1√

p1p and H ′
2,p = (

h2, . . . , hp
)
. The orthogonality of

H p immediately implies

H2,pH ′
2,p = I p−1, (7a)

H ′
2,pH2,p = Q p, and (7b)

h′
1h j = 0, j = 2, . . . , p. (7c)

Since h1h′
1 = P p, observe that

Z′
(

�̂
−1
2 0

0 P p−1 ⊗ �̂
−1
1

)
Z = (H ′

p ⊗ Iq)

(
�̂

−1
2 0

0 P p−1 ⊗ �̂
−1
1

)
(H p ⊗ Iq)

=
(
h1 ⊗ Iq; H ′

2,p ⊗ Iq
)(

�̂
−1
2 0

0 P p−1 ⊗ �̂
−1
1

)(
h′
1 ⊗ Iq

H2,p ⊗ Iq

)

=
(
h1 ⊗ �̂

−1
2 ; H ′

2,p P p−1 ⊗ �̂
−1
1

)( h′
1 ⊗ Iq

H2,p ⊗ Iq

)

= P p ⊗ �̂
−1
2 + H ′

2,p P p−1H2,p ⊗ �̂
−1
1 ,

and using (7b) the difference between the matrices in the quadratics forms (5) and (6)
is given by

(
P p ⊗ �̂

−1
2 + Q p ⊗ �̂

−1
1

)
− Z′

(
�̂

−1
2 0

0 P p−1 ⊗ �̂
−1
1

)
Z

=
(
H ′

2,pH2,p − H ′
2,p P p−1H2,p

)
⊗ �̂

−1
1

=
(
H ′

2,p Q p−1H2,p

)
⊗ �̂

−1
1 .
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Therefore,

D2 − BT 2 = n (x − μ0)
′ [(H ′

2,p Q p−1H2,p

)
⊗ �̂

−1
1

]
(x − μ0). (8)

Since Q p−1 is symmetric and idempotent, and �̂
−1
1 is positive definitewith probability

one, it follows that
(
H ′

2,p Q p−1H2,p

)
⊗ �̂

−1
1 is a positive semidefinite matrix with

probability one for any H2,p satisfying (7a)–(7c), which means that D2 − BT 2 ≥ 0.
�

Lemma 2 There exists H p satisfying (7a)–(7c) for which max
Hp

BT 2 = D2 only if

p = 2 (for any q) or q = 1 (for any p).

Proof If p = 2 then obviously Q p−1 = Q1 = 0, therefore D2−BT 2 = 0 in (8).Now,
let p > 2 and let T be any (p− 1)× (p− 2) matrix which spans the orthogonal com-
plement of the space generated by 1√

p−1
1p−1 such that Q p−1 = TT ′. Observe that

H ′
2,pT �= 0, since it contains nontrivial linear combinations of linearly independent

vectors h2, . . . , hp. Clearly, (8) is zero iff
[
T ′H2,p ⊗ �̂

−1/2
1

]
(x − μ0) = 0. Since

�̂1 is positive definite with probability one (and thus nonsingular), this is equivalent
to

[
T ′H2,p ⊗ Iq

]
(x − μ0) = 0. (9)

Using the fact that x − μ0
df= vec

(
X − M0

)
, where X and M0 are q × p matrices,

and properties of vec operator we can rewrite last Eq. (9) as

T ′H2,p
(
X − M0

)′ = 0. (10)

Let t i , i = 1, . . . , p − 2, denote i th column of the matrix H ′
2,pT , i.e., t i is linear

combination of p-dimensional vectors h2, . . . , hp, and since T is of full column rank,
t1, . . . , t p−2 are also linearly independent and they form a subspace C1 of R

p of
dimension p − 2.

Let k j , j = 1, . . . , q, denote j th column of matrix
(
X − M0

)′
, i.e., k1, . . . , kq

are p-dimensional stochastic vectors, hence linear independent with probability one.
Thus, vectors k1, . . . , kq , 1p form a subspace C2 of R

p of dimension q + 1 with
probability 1.

Relations (10) and (7c) imply that subspaces C1 and C2 have to be orthogonal. In
R

p, it is possible only when p − 2 + q + 1 ≤ p, i.e., q ≤ 1. �

2.1.2 Distribution of the test statistic D2 under H0

Let us denote b = (
H p ⊗ Iq

)
(x − μ0). We consider vector b be partitioned in p

subvectors as b = (b′
1, . . . , b

′
p)

′, where bi , i = 1, . . . , p, is q-dimensional subvector.
Then b1, . . . , bp are independently normally distributed with
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b1 ∼ Nq

(
0; 1

n
�2

)
,

bi ∼ Nq

(
0; 1

n
�1

)
for i = 2, . . . , p,

under null hypothesis H0. Since

H p P pH ′
p =

⎛
⎝

1 0 ··· 0
0 0 ··· 0
...
...
. . .

...
0 0 ··· 0

⎞
⎠ = e1:pe′

1:p,

and

H p Q pH
′
p =

⎛
⎝

0 0 ··· 0
0 1 ··· 0
...
...
. . .

...
0 0 ··· 1

⎞
⎠ =

p∑
i=2

ei :pe′
i :p,

where ei :p is the i th column of I p, the statistic D2 can be written in the form

D2 = n (x − μ0)
′ [P p ⊗ �̂

−1
2 + Q p ⊗ �̂

−1
1

]
(x − μ0)

= nb′ (H p ⊗ Iq
) [

P p ⊗ �̂
−1
2 + Q p ⊗ �̂

−1
1

] (
H p ⊗ Iq

)′ b

= nb′
1�̂

−1
2 b1 + n

p∑
i=2

b′
i �̂

−1
1 bi

= tr
[
nb1b′

1�̂
−1
2

]
+ tr

[ p∑
i=2

nbi b′
i �̂

−1
1

]
d f= T 2

01 + T 2
02. (11)

Clearly, T 2
01 and T 2

02 are independent. Since nb1b′
1 ∼ Wq (1,�2) and (n − 1)�̂2 ∼

Wq (n − 1,�2), T 2
01 has Lawley–Hotelling trace (LH-trace) distribution T

2
0 (q; 1, n−

1) if n − 1 ≥ q.
Similarly,

∑p
i=2 nbi b

′
i ∼ Wq (p − 1,�1) and (n − 1)(p − 1)�̂1 ∼ Wq

((n − 1)(p − 1),�1) imply that T 2
02 has LH-trace distribution T 2

0 (q; p − 1, (n −
1)(p − 1)) if (n − 1)(p − 1) ≥ q.

Therefore, from (11)we see that the distribution of D2 is the convolution of twoLH-
trace distributions, i.e., T 2

0 (q; 1, n−1)⊕T 2
0 (q; p−1, (n−1)(p−1)). Unfortunately,

there is no simple way for obtaining critical values of this convolution, so that we have
to use simulations. However, LH-trace distribution is usually approximated by F-
distribution (see McKeon 1974). In fact, T 2

0 (q; 1, n − 1) is equal to usual Hotelling

T 2
q,n−1, which is equivalent to

(n−1)q
n−q F(q, n−q). The second term, T 2

0 (q; p−1, (n−
1)(p − 1)), can be approximated by

(n − 1)(p − 1)2q

np − n − p − q
· b − 2

b
F((p − 1)q, b),
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where

b = 4 + (pq − q + 2)(np − n − p − q − 2)(np − n − p − q + 1)

(np − n − p)(p + q) − (q − 1)(q + 2)
.

Therefore, we can approximate the distribution of D2 by the convolution of the two
(one exact and other approximating) F-distributions, where its critical values can be
obtained by the method of Dyer (1982). It is interesting, from practical point of view,
to compare these critical values with the simulated ones.

Thus, we see that the first convolution terms in the distributions of BT 2 and D2 are
the same. The difference is made by the second term, where T 2

q,(n−1)(p−1) changes to

T 2
0 (q; p − 1, (n − 1)(p − 1)).

Remark 1 The statistic T 2
01 has LH-trace distribution T

2
0 (q; 1, n−1) if n−1 ≥ q, and

T 2
02 has LH-trace distribution T

2
0 (q; p−1, (n−1)(p−1)) if (n−1)(p−1) ≥ q. Since

p ≥ 2 for BCS structure as mentioned in the Sect. 1, we have (n − 1)(p − 1) ≥ q
when n − 1 ≥ q. Therefore, the only condition needed on sample size in order to
have T 2

01 and T 2
02 LH-trace distributions is n − 1 ≥ q, i.e., n ≥ q + 1; regardless of

p. In other words, the minimum sample size needed to compute the D2 test statistic
is q + 1. The minimum sample size needed to compute the BT 2 test statistic is also
q + 1 (see Roy et al. 2015), whereas the minimum sample size needed to compute the
Hotelling’s T 2 test statistic is pq + 1. Thus, we see that for a small sample data set
where n ≤ pq one cannot compute Hotelling’s T 2 test statistic, which is possible for
the BT 2 and D2 test statistics.

2.1.3 Exchangeable mean structure

Let us now assume that μ = 1p ⊗ ξq . Using similar method as above one can easily
arrive at the estimator

ξ̂ = 1

np

(
1′
p ⊗ Iq

)
X˜1n ∼ Nq

(
ξ ,

1

np
�2

)
.

Since Qn1n = 0, X˜QnX˜
′ and X˜1n are independent. It follows that S and ξ̂ are

independent, and also �̂2 and ξ̂ . Thus, Hotelling T 2 statistic for testing H0 : ξ = ξ0
against H1 : ξ �= ξ0 is

T 2 = np
(̂
ξ − ξ0

)′
�̂

−1
2

(̂
ξ − ξ0

) ∼ T 2
q,n−1.

This is very similar to the first component of BT 2 or D2 statistic.

2.2 Power comparison

As it was already explained, choosing different transformation matrices in BT 2 statis-
tic can lead to different power of the test. However, themaximummaxHp BT

2 depends
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Fig. 1 Power comparison of BT 2 and D2 for different values of q and p at 5% and 1% level of significance
α

on the data; it is not obtained for fixed Hp. On the other hand, for q > 1 there is a
gap between this maximum and D2, which also has another distribution, so that the
tests are not directly comparable. That is why we did some simulations to compare
the powers of the two alternative tests. The maximization of BT 2 was done numeri-
cally using software Mathematica. Critical values of the test are computed using R.
Implementation details and the R code to compute the critical values of D2, BT 2 and
Hotelling’s T 2 tests are freely available as online supplementary material. In the R
code, the functions are written in such a way that the user needs to ensure that the data
are in the form of pq ×n matrix, where each column is composed of p q-dimensional
vectors one below other (for detail see the online supplementary material). Results of
empirical power of BT 2 and D2 based on 10,000 samples of sizes n = q + 1, 20 and
50 (we used only 3 different sample sizes since finding numerically Hp for each data
set is very time consuming) are presented in Fig. 1, where horizontal axis represents
the sample size and vertical axis represents the power. Figure 1 portrays the power
comparison of BT 2 and D2 for different values of q = 2, 5 and 10, and for different
values of p = 3, 5 and 8 at 5% as well as 1% level of significance α. As expected the
power of both BT 2 and D2 increases with sample size n for all q, p for both 5% and
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Fig. 2 Empirical Type I errors for different values of q and p at 5% level of significance α with skew
parameter d = 10

1% significance levels. Figure 1 shows that the differences of the empirical power of
BT 2 and D2 are negligible in all investigated cases.

As suggested by a referee, we also study the performance (empirical Type I errors
and powers) of the test statistic D2 under the violation of the underlying normality
assumption. Particularly, we generate the elements of the error term from the skew-
normal distribution with the skew parameter d = 0, 5, 10, 100. The case d = 0
corresponds to the normality assumption, and it is included for the comparison purpose.
The parameters are assumed as q = 2, 3, 5, 7 and p = 2, 3, 5, 7. Results of empirical
Type I errors at 5% level of significance α for D2 based on 10,000 samples of sizes
n = 3, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 125 and 150 (the smallest n is
always taken as q + 1) are presented in Fig. 2. Only the results for the skew parameter
d = 10 are presented in this figure; the results for other skew parameters are similar. It
is seen that the skew parameter does not have an influence on the coverage probability.

The power comparison of D2 at 5% level of significance α for parameters q = 2
and p = 2 and different values of skew parameter d is presented in Fig. 3. The
curves for different skew parameters are almost identical, and this is true also for
all other combinations of parameters q and p. Therefore, in Fig. 4 we present the
results only for the skew parameter d = 10; it presents the power comparison for
different combinations of parameters q and p. As expected, the power decreases with
the increase in either of these two parameters.

2.3 Two-sample test

Using the results of the previous sections, we now derive the two-sample test. Let
us consider the case where pq dimensional random sample u1, . . . , un are from
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Fig. 3 Power comparison of D2

for q = 2 and p = 2 at 5% level
of significance α with different
skew parameters d

Fig. 4 Power comparison of D2 for different values of q and p at 5% level of significance α with skew
parameter d = 10

Npq
(
μU ,Σ1

)
and a second random sample v1, . . . , vm are from Npq

(
μV ,Σ2

)
. We

want to test

H0 : μU = μV against H1 : μU �= μV . (12)

We assume that the two samples are independent and that Σ1 = Σ2 = Σ, say,
with Σ unknown, but assuming to have BCS structure. Let U˜ = (u1, . . . , un) and
V˜ = (v1, . . . , vm). Let u = 1

n

∑n
r=1 ur and v = 1

m

∑m
r=1 vr be the sample means

of the two populations. We know that the sample means u and v are independent
of the covariance matrix estimators S1 = 1

n−1U˜QJnU˜
′ and S2 = 1

m−1V˜QJmV˜
′,

respectively (Mardia et al. 1979), and therefore they are also independent of the pooled
estimator

Spl = 1

n + m − 2

(
(n − 1)S1 + (m − 1)S2

)
.
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Thus, u − v ∼ Npq
(
μU − μV , n+m

nm Σ
) H0= Npq

(
0, n+m

nm Σ
)
,

and Spl ∼ Wpq

(
n + m − 2, 1

n+m−2Σ
)
. We can use the following unbiased esti-

mators of the variance and covariance matrices:

Σ̂0 = 1

p

p∑
i=1

Spli i , Σ̂1 = 1

p(p − 1)

p∑
i=1

p∑
j=1

i �= j

Spli j ,

�̂
pl
1 = Σ̂0 − Σ̂1 and �̂

pl
2 = Σ̂0 + (p − 1)Σ̂1.

Applying Theorem 1, we get two independent Wishart matrices

(n + m − 2)(p − 1)�̂
pl
1 ∼ Wq ((n + m − 2)(p − 1),�1),

(n + m − 2)�̂
pl
2 ∼ Wq (n + m − 2,�2).

Since the estimators �̂
pl
1 and �̂

pl
2 are based on Spl , they are independent of u − v.

Therefore, using analogous procedure as in the one-sample case, we arrive to Block
T 2 statistic to test Hypothesis (12) in the form

BT 2 = nm

n + m
(u − v)′ Z′

( (
�̂

pl
2

)−1
0

0 1
p−1 J p−1⊗

(
�̂

pl
1

)−1

)
Z (u − v) (13)

∼ T 2
q,n+m−2 ⊕ T 2

q,(n+m−2)(p−1).

Similarly, denoting d = (
H p ⊗ Iq

)
(u − v) = (d ′

1, . . . , d
′
p)

′, we get

D2 = nm

n + m
(u − v)′

[
P p ⊗

(
�̂

pl
2

)−1 + Q p ⊗
(
�̂

pl
1

)−1
]

(u − v)

= nm

n + m
d ′ (H p ⊗ Iq

) [
P p ⊗

(
�̂

pl
2

)−1 + Q p ⊗
(
�̂

pl
1

)−1
] (

H p ⊗ Iq
)′ d

= tr

[
nm

n + m
d1d ′

1

(
�̂

pl
2

)−1
]

+ tr

[ p∑
i=2

nm

n + m
di d ′

i

(
�̂

pl
1

)−1
]

d f= T 2
03 + T 2

04,

where T 2
03 ∼ T 2

0 (q; 1, n + m − 2) = T 2
q,n+m−2 and T 2

04 ∼ T 2
0 (q; p − 1, (n + m −

2)(p−1)) are independent. Thus, in this case we also see that the distribution of D2 is
the convolution of two LH-trace distributions, i.e., T 2

0 (q; 1, n +m − 2) ⊕ T 2
0 (q; p −

1, (n + m − 2)(p − 1)). As before, we can use the fact that T 2
q,n+m−2 is equivalent

to n+m−q−1
q(n+m−2) F(q, n + m − q − 1), and T 2

0 (q; p − 1, (n + m − 2)(p − 1)) can be
approximated by

(n + m − 2)(p − 1)2q

(n + m − 2)(p − 1) − q − 1
· c − 2

c
F((p − 1)q, c),
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where

c = 4 + (pq − q + 2) [(n + m − 2)(p − 1) − q − 3] [(n + m − 2)(p − 1) − q]

(np + mp − 2p − n − m + 1) (p + q) − (q − 1)(q + 2)
.

The two-sample Hypothesis (12) is tested using both BT 2 and D2 in the PET data
sets discussed in the Sect. 1.

Remark 2 The statistic T 2
03 has LH-trace distribution T 2

0 (q; 1, n + m − 2) if n +
m − 2 ≥ q, and T 2

04 has LH-trace distribution T 2
0 (q; p − 1, (n + m − 2)(p − 1)) if

(n+m−2)(p−1) ≥ q. Since p ≥ 2 forBCS structure, we have (n+m−2)(p−1) ≥ q
when n + m − 2 ≥ q. Therefore, the only condition needed on sample size in order
to have T 2

03 and T 2
04 LH-trace distributions is n + m − 2 ≥ q, i.e., n + m ≥ q + 2.

Again, the value of p adds no other requirement on the sample size.

If both samples have also exchangeable mean structure, i.e., μU = 1p ⊗ ξU , μV =
1p ⊗ ξV , we can test the hypothesis H0 : ξU = ξV using the same method as in
Sect. 2.1.3. We obtain the test statistic

T 2 = nmp

n + m

(̂
ξU − ξ̂V

)′ (
�̂

pl
2

)−1 (̂
ξU − ξ̂V

) ∼ T 2
q,n+m−2 .

3 Real data examples

Our new method of testing the equality of mean vectors in BCS structure setting is
applied to two multivariate repeated measures data sets (Sperling et al. 1990) with two
populations on cerebral metabolism in epileptic patients (see the online supplementary
material). The cerebral cortex has long been recognized as essential in development
of seizures and epilepsy.

As described in Sect. 1, the metabolic rates of glucose are measured in 16 locations
by positron emission tomography (PET) scans including 8 regions of interest: the first
five (q = 5), frontal, sensorimotor, temporal, parietal and occipital regions, are known
as cortical regions, and the last three (q = 3), caudate nucleus, lenticular nucleus and
thalamus regions, are known as subcortical regions. Each region of interest includes
right-sided (R) and left-sided (L) metabolic rates (p = 2). The Hypothesis (12) for
equality of mean vectors of Normal control (n = 18) and the Right focus groups
(m = 8) is tested separately for cortical as well as for subcortical regions. Normal
control group in the both data sets has BCS covariance structure. Since in both data
sets p = 2, by Lemma 2 we have D2 = max BT 2.

3.1 Cortical metabolic rate

We rearrange the variables in the data set by grouping together the right-sided
metabolic rates (i = 1) at the frontal, sensorimotor, temporal, parietal and occipi-
tal regions and then left-sided metabolic rates (i = 2) at the same regions. We also
compare our findings with the conventional Hotelling’s T 2 statistic. The unbiased
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estimates of the mean vectors μN and μR for the Normal control and the Right focus
groups for the cortical regions are

μ̂N = (4.110, 4.035, 3.791, 3.643, 3.864, 4.162, 4.092, 3.754, 3.623, 3.887) and

μ̂R = (3.988, 3.954, 3.736, 3.523, 4.165, 4.103, 4.143, 3.960, 3.806, 4.323),

respectively. For convenience, numerical results are displayed to three (rounded) dec-
imal places. The mean vectors for the two groups appear to be slightly different. The

estimates Σ̂
N
0 and Σ̂

N
1 for Normal control group are

Σ̂
N
0 =

⎡
⎢⎢⎢⎢⎣

0.435 0.443 0.335 0.422 0.391
0.443 0.495 0.354 0.471 0.428
0.335 0.354 0.359 0.362 0.385
0.422 0.471 0.362 0.506 0.460
0.391 0.428 0.385 0.460 0.507

⎤
⎥⎥⎥⎥⎦
and Σ̂

N
1 =

⎡
⎢⎢⎢⎢⎣

0.427 0.442 0.326 0.418 0.388
0.442 0.484 0.353 0.459 0.419
0.326 0.353 0.340 0.359 0.385
0.418 0.459 0.359 0.482 0.448
0.388 0.419 0.385 0.448 0.495

⎤
⎥⎥⎥⎥⎦
,

and the estimates Σ̂
R
0 and Σ̂

R
1 for the Right focus group are

Σ̂
R
0 =

⎡
⎢⎢⎢⎢⎣

0.523 0.415 0.273 0.346 0.258
0.415 0.403 0.246 0.323 0.244
0.273 0.246 0.482 0.264 0.346
0.346 0.323 0.264 0.304 0.267
0.258 0.244 0.346 0.267 0.325

⎤
⎥⎥⎥⎥⎦
and Σ̂

R
1 =

⎡
⎢⎢⎢⎢⎣

0.514 0.407 0.257 0.348 0.263
0.407 0.390 0.221 0.319 0.240
0.257 0.221 0.400 0.262 0.354
0.348 0.319 0.262 0.290 0.243
0.263 0.240 0.354 0.243 0.274

⎤
⎥⎥⎥⎥⎦
.

The 5×5matrices Σ̂
N
0 represent the estimate of the variance–covariance matrix of the

five response variables (frontal, sensorimotor, temporal, parietal and occipital) with

any metabolic rate, whereas the 5 × 5 matrices Σ̂
N
1 represent the covariance matrix

of the five response variables between the two metabolic rates in the Normal control

group. Similarly, Σ̂
R
0 and Σ̂

R
1 for the Right focus group.

The estimates of the variance–covariancematrices for the Normal control and Right
focus groups seem to be similar (see Sect. 4). Now, to test the Hypothesis (12) we
calculate pooled sample block exchangeable variance–covariance matrices from the
above estimates, the components of which are

Σ̂
pl
0 =

⎡
⎢⎢⎢⎢⎣

0.461 0.435 0.317 0.400 0.352
0.435 0.468 0.322 0.428 0.374
0.317 0.322 0.395 0.333 0.374
0.400 0.428 0.333 0.447 0.404
0.352 0.374 0.374 0.404 0.454

⎤
⎥⎥⎥⎥⎦
and Σ̂

pl
1 =

⎡
⎢⎢⎢⎢⎣

0.453 0.432 0.306 0.398 0.351
0.432 0.457 0.315 0.419 0.367
0.306 0.315 0.357 0.331 0.376
0.398 0.419 0.331 0.426 0.388
0.351 0.367 0.376 0.388 0.430

⎤
⎥⎥⎥⎥⎦
.

The calculated BT 2 statistic (13) (which is a convolution of two Hotelling’s T 2 with
degrees of freedoms (q = 5; n+m − 2 = 24) and (q = 5; (n+m − 2)(p− 1) = 24,
respectively) is 32.49, and the corresponding p value is 0.0198.Therefore,we conclude
that the Normal control and the Right focus groups are different. However, when
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we use the classical Hotelling’s T 2 test, we get the calculated T 2 statistic as 28.08
(with degrees of freedom (pq = 10; n + m − 2 = 24)) and the corresponding
p value is 0.1574. Thus, Hotelling’s T 2 test concludes that the two groups are not
different, which contradicts to the conclusion of the BT 2 test. Therefore, we see that
neglecting the correct variance–covariance structure of the data by the Hotelling’s
T 2 test masks the slight difference between the two groups and leads to incorrect
conclusion.

3.2 Subcortical metabolic rate

As before, we rearrange the variables in the data set by grouping together the right-
sided metabolic rates (i = 1) at the caudate nucleus, lenticular nucleus and thalamus
regions and then left-sided metabolic rates (i = 2) at the caudate nucleus, lenticular
nucleus and thalamus regions. Here we also compare our findings with the classical
Hotelling’s T 2 statistic. The unbiased estimates of the mean vectors μN and μR for
the Normal control and the Right focus groups for the subcortical regions are

μ̂N = (3.828, 4.294, 3.999, 3.959, 4.400, 3.984) and

μ̂R = (3.698, 4.343, 3.998, 4.076, 4.326, 4.041),

respectively. The difference of the twomean vectors is even smaller than in the previous

example. The estimates Σ̂
N
0 and Σ̂

N
1 for Normal control group are

Σ̂
N
0 =

⎡
⎣
0.514 0.434 0.435
0.434 0.647 0.547
0.435 0.547 0.522

⎤
⎦ and Σ̂

N
1 =

⎡
⎣
0.482 0.434 0.440
0.434 0.631 0.543
0.440 0.543 0.510

⎤
⎦.

and the estimates Σ̂
R
0 and Σ̂

R
1 for the Right focus group are

Σ̂
R
0 =

⎡
⎣
0.569 0.543 0.317
0.543 0.757 0.493
0.317 0.493 0.377

⎤
⎦ and Σ̂

R
1 =

⎡
⎣
0.548 0.539 0.315
0.539 0.726 0.485
0.315 0.485 0.367

⎤
⎦.

The 3 × 3 matrices Σ̂
N
0 represent the estimate of the variance–covariance matrix of

the three response variables (caudate nucleus, lenticular nucleus and thalamus) with

any metabolic rate, whereas the 3 × 3 matrices Σ̂
N
1 represent the covariance matrix

of the three response variables between the two metabolic rates in the Normal control

group. Similarly, Σ̂
R
0 and Σ̂

R
1 for the Right focus group.

The estimates of the variance–covariancematrices for the Normal control and Right
focus groups appear to be similar (see Sect. 4). Now, to test Hypothesis (12) we
calculate pooled sample block exchangeable variance–covariance matrices from the
above estimates, the components of which are
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Σ̂
pl
0 =

⎡
⎣
0.530 0.466 0.401
0.466 0.679 0.531
0.401 0.531 0.480

⎤
⎦ and Σ̂

pl
1 =

⎡
⎣
0.502 0.465 0.404
0.465 0.659 0.526
0.404 0.526 0.468

⎤
⎦.

The resulting BT 2 statistic (13) (which is a convolution of two Hotelling’s T 2 with
degrees of freedoms (q = 3; n+m−2 = 14) and (q = 3; (n+m−2)(p−1) = 14),
respectively) equals to 12.02, and the corresponding p value is 0.1341. Thus, we
conclude that the Normal control group and the Right focus group are not differ-
ent, as we have suspected. Again, we can compare it with the classical Hotelling’s
T 2 test, getting Hotelling’s T 2 statistic value equal to 18.07 (with degrees of free-
dom (pq = 6; n + m − 2 = 14) and the corresponding p value is 0.0691. This
is not significant at 5% level, so that in this case we arrive at the same deci-
sion.

However, we can see that it can easily happen the opposite to the previous example,
i.e., that BT 2 would be insignificant and Hotelling’s T 2 significant. Thus, not taking
into account the inherent covariance structure that is present in the data set can be
dangerous in both directions.

4 Concluding remarks

In this article, we study the hypothesis testing of equality of mean vectors from
one population as well as from two independent populations for two-level multi-
variate data with block exchangeable covariance structure. Such a structure is a
realistic assumption in many cases and substantially reduces the number of esti-
mated parameters. In this paper, we assume the equality of the BCS structure in
two populations; however, we are working on the problem of different BCS covari-
ance structures in the two populations and publish it in a future correspondence.
Also, in future we will investigate the test with product of beta random variables and
report it in another correspondence. The proposed methodology can readily be gen-
eralized to more than two levels and will be reported in a follow-up paper. Another
inspiration for future work is to develop test statistic under the scenarios of missing
values (e.g., Lin et al. 2009; Roy 2006) or censoring observations, e.g., Wang et al
(2015).

5 Supplementary materials

The ‘TestMeanBCS.R’ file contains the R code to compute the critical values of D2,
BT 2 andHotelling’s T 2 tests. Data sets used in the illustration of our proposedmethod
in Sect. 3.
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