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Abstract The traditional estimation of mixture regression models is based on the
assumption of normality (symmetry) of component errors and thus is sensitive to out-
liers, heavy-tailed errors and/or asymmetric errors. In this work we present a proposal
to deal with these issues simultaneously in the context of the mixture regression by
extending the classic normal model by assuming that the random errors follow a scale
mixtures of skew-normal distributions. This approach allows us to model data with
great flexibility, accommodating skewness and heavy tails. The main virtue of consid-
ering the mixture regression models under the class of scale mixtures of skew-normal
distributions is that they have a nice hierarchical representation which allows easy
implementation of inference. We develop a simple EM-type algorithm to perform
maximum likelihood inference of the parameters of the proposed model. In order to
examine the robust aspect of this flexible model against outlying observations, some
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simulation studies are also presented. Finally, a real data set is analyzed, illustrating
the usefulness of the proposed method.

Keywords EM algorithm · Finite mixtures of regression models · Scale mixtures of
skew-normal distributions

Mathematics Subject Classification 62F10 · 62Jxx · 62H30

1 Introduction

Modeling based on finite mixture distributions is a rapidly developing area with an
exploding range of applications. Finite mixture models are nowadays applied in such
diverse areas as biology, biometrics, genetics, medicine and marketing, among others.
There are various features of finite mixture distributions that make them useful in
statistical modeling. For instance, statistical models which are based on finite mix-
ture distributions capture many specific properties of real data such as multimodality,
skewness, kurtosis, and unobserved heterogeneity. The importance of mixture distri-
butions can be noted from the large number of books on mixtures, including Lindsay
(1995), Böhning (2000), McLachlan and Peel (2000), Frühwirth-Schnatter (2006) and
Mengersen et al. (2011) and the special editions of the journalComputational Statistics
and Data Analysis (Böhning et al. 2007, 2014).

On the other hand, in applied statistics, a large number of applications deal with
relating a random variable Yi , which is observed on several occasions i = 1, . . . , n, to
a set of explanatory variables or covariates (xi1, . . . , xid−1) through a regression-
type model, where the conditional mean of Yi is assumed to depend on xi =
(1xi1 . . . xid−1)

� through E(Yi |β, xi ) = x�
i β, where β is a vector of unknown regres-

sion coefficients of dimension d. In many circumstances, however, the assumption
that the regression coefficient is fixed over all possible realizations of Y1, . . . ,Yn is
inadequate, and models where the regression coefficient changes are of great prac-
tical importance. One way to capture such changes in the parameter of a regression
model is to use finite mixtures of regression models (MRM). MRM are widely used
to investigate the relationship between variables coming from several unknown latent
homogeneous groups. They were first introduced by Quandt (1972) under the titles
“switching regression” or “clusterwise linear regression” (Späth 1979). Comprehen-
sive surveys are available in McLachlan and Peel (2000), and from a Bayesian point
of view, in Frühwirth-Schnatter (2006, Chap. 8).

The literature on maximum likelihood estimation of the parameters of the Gaussian
MRM (hereafter N-MRM), is very extensive. Applications include marketing (Quandt
and Ramsey 1978; DeSarbo and Cron 1988; DeSarbo et al. 1992), economics (Cosslett
and Lee 1985; Hamilton 1989), agriculture (Turner 2000), nutrition (Arellano-Valle
et al. 2008), and psychometrics (Liu et al. 2011). The standard algorithm in this case is
the so-called Expectation-Maximization algorithm (EM) algorithm of Dempster et al.
(1977), or perhaps some extension like the ECM algorithm (Meng and Rubin 1993)
or the ECME (Liu and Rubin 1994) algorithm.

Many extensions of this classicmodel have been proposed to broaden the applicabil-
ity of linear regression analysis to situations where the Gaussian error term assumption
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may be inadequate, for example, because the datasets involve skewed or longer than
normal tails errors. Bai et al. (2012) proposed a modification of the EM algorithm
for normal mixtures, by replacing the least squares criterion in the M step with a
robust criterion. Through a simulation study, they show that their proposed estimate is
robust when the data have outliers or the error distribution has heavy tails. Song et al.
(2014) proposed a robust estimation procedure for mixture linear regression models
by assuming that the error terms follow a Laplace distribution. An MRM based on
the Student-t model (T-MRM) has been recently proposed by Yao et al. (2014) to
estimate the mixture regression parameters robustly. Using the skew-normal distribu-
tion defined by Azzalini (1985), Liu and Lin (2014) proposed a version of the MRM
(hereafter SN-MRM), which appears to be a more theoretically compelling modeling
tool for practitioners because it can investigate differential effects of covariates and
accommodate moderately asymmetrical errors.

In this article, we propose a unified robust mixture regression model based on
scale mixtures of skew-normal distributions (SMSN) by extending the mixture of
scale mixtures of skew-normal distributions proposed by Basso et al. (2010) to the
regression setting. The class of SMSN distributions, proposed by Branco and Dey
(2001), is attractive since it simultaneously models skewness with heavy tails. Besides
this, it has a stochastic representation for easy implementation of the EM algorithm
and it also facilitates the study of many useful properties. This extension result in a
flexible class of models for robust estimation in MRM since it contains distributions
such as the skew-normal distribution and all the symmetric class of scale mixtures of
normal distributions defined by Andrews and Mallows (1974). Moreover, the class of
SMSN distributions is a rich class that contains proper elements such as the skew-
t (Azzalini and Capitanio 2003), skew-slash (Wang and Genton 2006) and skew-
contaminated normal distribution (Lachos et al. 2010). Therefore they can be used in
many types of models to infer robustness. In addition, this rich class of distributions
can naturally attribute different weights to each observation and consequently control
the influence of a single observation on the parameter estimates. Thus, the objectives of
this study are: (i) to propose a mixture regression estimation method based on SMSN
distributions, extending the recent works of Yao et al. (2014) and Liu and Lin (2014),
(ii) to implement and evaluate the proposed method computationally, and (iii) to apply
these results to the analysis of a real life dataset.

The remainder of the paper is organized as follows. In Sect. 2, we briefly discuss the
SMSN distributions and some of their properties. In Sect. 3, we present the SMSN-
MRM, including the EM algorithm for maximum likelihood (ML) estimation and
the observed information matrix. In Sects. 4 and 5, numerical examples using both
simulated and real data are given to illustrate the performance of the proposed method.
Finally, some concluding remarks are presented in Sect. 6.

2 Scale mixtures of skew-normal distributions

2.1 Preliminaries

In order to introduce some notations, we start with the definition of SMSN distribu-
tions; see Branco and Dey (2001) for more details.
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Definition 1 (Azzalini 1985) We say that a random variable Y has a skew-normal
distribution with location parameter μ, dispersion parameter σ 2 > 0 and skewness
parameter λ, and we write Y ∼ SN(μ, σ 2, λ), if its density is given by

f (y) = 2φ(y;μ, σ 2)Φ(a), y ∈ R,

where a = λσ−1(y − μ), φ(.;μ, σ 2) stands for the pdf of the univariate normal
distribution with mean μ and variance σ 2, N(μ, σ 2) say, and Φ(.) represents the
distribution function of the standard univariate normal distribution.

Definition 2 The distribution of the random variable Y belongs to the family of scale
mixtures of skew-normal (SMSN) distributions when

Y = μ + κ(U )1/2X,

where μ is a location parameter, X ∼ SN(0, σ 2, λ), κ(.) is a positive weight function
and U is a positive random variable with a cdf H(u; ν), where ν is a (possibly multi-
variate) parameter indexing the distribution ofU , known as the scale factor parameter,
which is independent of X .

We use the notation Y ∼ SMSN(μ, σ 2, λ; H). The name of the class becomes
clear when we note that the conditional distribution of Y givenU = u is skew-normal.
Specifically, we have that

Y |U = u ∼ SN(μ, κ(u)σ 2, λ), U ∼ H(·; ν).

Thus, the density of Y is given by

g(y) = 2
∫ ∞

0
φ(y;μ, κ(u)σ 2)Φ(κ(u)−1/2a)dH(u; ν). (1)

We also write Y ∼ SMSN(μ, σ 2, λ, ν), observing that here there is a little abuse of
notation, by omission of H .

One particular case of this distribution is the skew-normal distribution (Azzalini
1985), for which H is degenerate, with κ(u) = 1, u > 0. Also, when λ = 0, the SMSN
distribution reduces to the scale mixtures of normal distribution (SMN) (Andrews and
Mallows 1974). In this work, without loss of generality, specifically in the numerical
examples using both simulated and real data, we will concentrate on the case in which
κ(u) = u−1, i.e., the skew-t (ST) and the skew-slash (SSL), whose properties have
been widely discussed in Lachos et al. (2010), Basso et al. (2010) and Zeller et al.
(2011), for example.

A random variable Y with a pdf as in (1) has a marginal stochastic representation,
see Lachos et al. (2010), given by

Y
d= μ + ΔT + κ1/2(U )γ T1, (2)
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where
d= means “equal in distribution”, Δ = σδ, δ = λ√

1+λ2
, γ 2 = σ 2 − Δ2,

T1 = κ1/2(U )|T0|, |T0| denotes the absolute value of T0, U ∼ H(·; ν), T0 ∼ N (0, 1)
and T1 ∼ N (0, 1) are all independent variables. The representation in (2) facilitates
EM implementation for theMLestimation. Another important result that will be useful
in implementing the EM algorithm is given next. The statements of these results can
be found in Zeller et al. (2011).

Proposition 1 Let Y ∼ SMSN (μ, σ 2, λ; H) and let U ∼ H be the mixing random
scale factor. Then

E[Y ] = μ +
√

2

π
K1Δ, Var[Y ] = σ 2

(
K2 − 2

π
K 2
1 δ2

)
,

ur = E[κ−r (U )|y] = 2 f0(y)

f (y)
E{κ−r (Uy)Φ(κ−1/2(Uy)a)} and

ηr = E[κ−r/2(U )WΦ(κ−1/2(U )a)|y] = 2 f0(y)

f (y)
E{κ−r/2(Uy)φ(κ−1/2(Uy)a)},

where WΦ(.) = φ1(.)
Φ(.)

, a = λy0, with y0 = (y−μ)
σ

, f0 is the pdf of Y0 ∼
SMN(μ, σ 2; H), Uy

d= U |Y0 = y and Kr = E[κr/2(U )], r = 1, 2, . . .

Some particular cases of the SMSN family of distributions are given in Appendix A.1
of the Supplementary Material.

3 The proposed model

In this section, we consider the mixture regression model where the random errors
follow a scale mixtures of skew-normal distributions (SMSN-MRM). In general, a
normal mixture regression model (N-MRM) is defined as: let Z be a latent class
variable such that given Z = j , the response y depends on the p-dimensional predictor
x in a linear way

Y = x�β j + ε j , j = 1, . . . ,G, (3)

where G is the number of groups (also called components in mixture models) in the
population and ε j ∼ N (0, σ 2

j ) is independent of x. Suppose P(Z = j) = p j and Z is
independent of x, then the conditional density of Y given x, without observing Z , is

f (y|x, θ) =
G∑
j=1

p jφ(y|x�β j , σ
2
j ), (4)

where φ(·|μ, σ 2) is the density function of N (μ, σ 2) and θ = (θ�
1 , . . . , θ�

G)�, with
θ j = (p j ,β

�
j , σ 2

j )
�. Themodel (4) is the so called normalmixture of regressionmod-

els. FollowingYao et al. (2014) andLiu andLin (2014), we extend theN-MRMdefined
above by considering the linear relationship in (3) with the following assumption:
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ε j ∼ SMSN(bΔ j , σ
2
j , λ j , ν j ), j = 1, . . . ,G, (5)

whereΔ j = σ jδ j , δ j = λ j√
1+λ2j

, b = −
√

2
π
K1,with Kr = E[κr/2(U )], r = 1, 2, . . . ,

which corresponds to the regression model where the error distribution has mean zero
and hence the regression parameters are all comparable.

The mixture regression model with scale mixtures of skew-normal distributions
defined above can be formulated in a similarway to themodel defined in (4) as follows:

f (y|x, θ) =
G∑
j=1

p j g(y|x, θ j ), (6)

where g(·|x, θ j ) is the density function of SMSN(x�β j + bΔ j , σ
2
j , λ j , ν j ) and

θ j = (p j ,β
�
j , σ 2

j , λ j , ν j )
�. Concerning the parameter ν j of the mixing distribution

H(; ν j ), for j = 1, . . . ,G, it can be a vector of parameters, e.g., the contam-
inated normal distribution. Thus, for computational convenience we assume that
ν = ν1 = ν2 = . . . , νG . This strategy works very well in the empirical studies
that we have conducted and greatly simplifies the optimization problem. Observe that
themodel considers that the regression coefficient and the error variance are not homo-
geneous over all independent possible pairs (Yi , xi ), i = 1 . . . , n. In fact, they change
between subgroups of observations.

In the context of classic inference, the unknown parameter θ , given observations
(x1, y1), . . . , (xn, yn), is traditionally estimated by the ML estimate:

θ̂ = argmaxθ

n∑
i=1

log( f (yi |xi , θ)). (7)

Note that the maximizer of (7) does not have an explicit solution, so we propose to use
anEM-type algorithm (Dempster et al. 1977). For a gentle tutorial on the EMalgorithm
and its applications to parameter estimation for mixture models, see McLachlan and
Peel (2000).

3.1 Maximum likelihood estimation via EM algorithm

In this section, we present an EM algorithm for the ML estimation of the mixture
regression model with scale mixtures of skew-normal distributions. To explore the
EM algorithm we present the SMSN-MRM in an incomplete-data framework, using
the results presented in Sect. 2.

In order to simplify notations, algebra and future interpretations, it is appropriate
to deal with a random vector Zi = (Zi1, . . . , ZiG)� instead of the random variable
Zi , where

Zi j =
{
1, if the i th observation is from the j th component;

0, otherwise.
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Consequently, under this approach the random vector Z has multinomial distribution
considering a withdrawal into G categories, with probabilities p1, . . . , pG , i.e.,

P(Zi = zi ) = pzi11 pzi22 . . . pziGG ,

where
∑G

j=1 p j = 1, such that Yi |Zi j = 1
ind∼ SMSN(x�

i β j + bΔ j , σ
2
j , λ j , ν j ). For

the vector Zi wewill use the notation Zi
iid∼ Multinomial(1, p1, . . . , pg).Observe that

Zi j = 1 if and only if Zi = j . Thus, from (2), the set-up defined above can be written
hierarchically as

Yi |Ti = ti ,Ui = ui , Zi j = 1
ind∼ N (x�

i β j + Δ j ti , κ(ui )γ
2
j ), (8)

Ti |Ui = ui , Zi j = 1
iid∼ T N1(b, κ(ui ); (b,∞)), (9)

Ui |Zi j = 1
ind∼ H(ui ; ν), (10)

Zi
iid∼ Multinomial(1, p1, . . . , pg), (11)

for i = 1, . . . , n, all independent, where γ 2
j = σ 2

j −Δ2
j and T N1(r, s; (a, b)) denotes

the univariate normal distribution (N (r, s)), truncated on the interval (a, b). Let
y = (y1, . . . , yn)�, u = (u1, . . . , un)�, t = (t1, . . . , tn)� and z = (z�

1 , . . . , z�
n )�.

Then, under the hierarchical representation (8)–(10), it follows that the complete log-
likelihood function associated with yc = (y�, u�, t�, z�)� is

c(θ |yc) = c +
n∑

i=1

G∑
j=1

zi j log p j − 1

2

n∑
i=1

G∑
j=1

zi j log γ 2
j

−1

2

n∑
i=1

G∑
j=1

zi jκ−1(ui )

γ 2
j

(yi − x�
i β j − Δ j ti )

2,

where c is a constant that is independent of the parameter vector θ . Letting θ̂
(k)
j =

( p̂(k)
j , β̂

(k)�
j , σ̂ 2(k)

j , λ̂
(k)
j , ν(k))�, the estimates of θ at the kth iteration. It follows, after

some simple algebra, that the conditional expectation of the complete log-likelihood
function has the form

Q(θ |̂θ (k)
) = c +

n∑
i=1

G∑
j=1

ẑ(k)i j log p j − 1

2

n∑
i=1

G∑
j=1

ẑ(k)i j log γ 2
j − 1

2
(12)

×
n∑

i=1

G∑
j=1

ẑu(k)
i j

γ 2
j

(yi −x�
i β j )

2

+
n∑

i=1

G∑
j=1

ẑut (k)i j

γ 2
j

(yi −x�
i β j )Δ j − 1

2

n∑
i=1

G∑
j=1

ẑut2
(k)

i j

γ 2
j

Δ2
j , (13)
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where ẑ(k)i j = E[Zi j |yi , θ̂ (k)], ẑu(k)
i j = E[Zi jκ

−1(Ui )|yi , θ̂ (k)], ẑut (k)i j = E[Zi jκ
−1

(Ui )Ti |yi , θ̂ (k)] and ẑut2(k)

i j = E[Zi jκ
−1(Ui )T 2

i |yi , θ̂ (k)]. By using known properties
of conditional expectation, we obtain

ẑ(k)i j = p̂(k)
j g(yi |xi , θ̂ (k)

j )

∑G
j=1 p̂

(k)
j g(yi |xi , θ̂ (k)

j )
, (14)

ẑu(k)
i j = ẑ(k)i j û

(k)
i j , ẑut (k)i j = ẑ(k)i j ût

(k)
i j and ẑut2

(k)

i j = ẑ(k)i j ût
2(k)
i j , with

ût (k)i j = û(k)
i j (m̂(k)

i j + b) + M̂ (k)
j η̂

(k)
i j , (15)

ût2
(k)
i j = û(k)

i j (m̂(k)
i j + b)2 + M̂2(k)

j + M̂ (k)
j (m̂(k)

i j + 2b)̂η(k)
i j , (16)

where M̂2
j = γ̂ 2

j

γ̂ 2
j+Δ̂2

j

and m̂i j = M̂2
j

Δ̂ j

γ̂ 2
j
(yi − x�

i β̂ j − bΔ̂ j ), i = 1, . . . , n, with all

these quantities evaluated at θ = θ̂
(k)
. Since ai j = mi j

Mi j
= λ jσ j (yi −x�

i β j −bΔ j ), the
conditional expectations given in (15)–(16), specifically ûi j = û1i j and η̂i j = η̂1i j ,
can be easily derived from the result given in Sect. 2 (see Proposition 1). Thus, at
least for the ST and SCN distributions of the SMSN class, we have a closed-form
expression for the quantities ûi j and η̂i j , as can be found in Zeller et al. (2011) and
Basso et al. (2010). For the SSL, Monte Carlo integration can be employed, which
yields the so-called MC-EM algorithm; see Wei and Tanner (1990), McLachlan and
Krishnan (2008) and Zeller et al. (2011).

When the M-step turns out to be analytically intractable, it can be replaced with a
sequence of conditional maximization (CM) steps. The resulting procedure is known
as the ECM algorithm. The ECME algorithm, a faster extension of EM and ECM,
is obtained by maximizing the constrained Q-function with some CM-steps that
maximize the corresponding constrained actual marginal likelihood function, called
CML-steps. Next, we describe this EM-type algorithm (ECME) for ML estimation of
the parameters of the SMSN-MRM.

E-step: Given θ = θ̂
(k)
, compute ẑ(k)i j , ẑu(k)

i j , ẑut (k)i j and ẑut2
(k)

i j , for i = 1, . . . , n,
using (15)–(16).

CM-step: Update θ̂
(k+1)

bymaximizing Q(θ |̂θ (k)
) over θ , which leads to the following

closed form expressions:

p̂(k+1)
j =

∑n
i=1 ẑ

(k)
i j

n
, (17)

β̂
(k+1)
j =

(
n∑

i=1

ẑu(k)
i j xix�

i

)−1 n∑
i=1

(ẑui
(k)yi − ẑut (k)i j Δ̂

(k)
j )xi , (18)

γ̂ 2(k+1)
j =

∑n
i=1[ẑu(k)

i j (yi − x�
i β̂

(k)
j )2 − 2ẑut (k)i j Δ̂

(k)
j (yi − x�

i β̂
(k)
j ) + ẑut2

(k)

i j Δ̂
2(k)
j ]∑n

i=1 ẑ
(k)
i j

, (19)
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Δ̂
(k+1)
j =

∑n
i=1 ẑut

(k)
i j (yi −x�

i β̂
(k)
j )

∑n
i=1 ẑut

2
(k)

i j

,

(20)

σ̂ 2(k+1)
j = γ̂ 2(k+1)

j + Δ̂
2(k+1)
j , λ̂

(k+1)
j = Δ̂

(k+1)
j√

γ̂ 2(k+1)
j

, j = 1, . . . ,G. (21)

CML-step: Update ν̂(k) by maximizing the actual marginal log-likelihood function,
obtaining

ν̂(k+1) = argmaxν

n∑
i=1

log

⎛
⎝ G∑

j=1

p(k)
j g(yi |xi ,β(k+1)

j , σ
2(k+1)
j ,λ

(k+1)
j , ν)

⎞
⎠ , (22)

where g(.|xi , θ j ) is defined in (6).
A more parsimonious model is achieved by supposing γ 2

1 = · · · = γ 2
G = γ 2,

which can be seen as a extension of the N-MRM with restricted variance-covariance
components. In this case, the updates for p̂(k)

j , β̂
(k)
j and �̂

(k)
j remain the same, and

the update for γ̂ 2(k)
j is given as

γ̂ 2(k+1) = 1

n

n∑
i=1

G∑
j=1

ẑ(k)i j γ̂ 2(k+1)
j .

The iterations are repeated until a suitable convergence rule is satisfied, e.g.,

∣∣∣∣∣
(̂θ

(k+1)
)

(̂θ
(k)

)
− 1

∣∣∣∣∣ < 10−5. (23)

Useful starting values required to implement this algorithm are those obtained under
the normality assumption when λ̂

(0)
j = 3sign(ρ̂ j ), where ρ̂ j is the sample skewness

coefficient for group j , for j = 1, . . . ,G. However, in order to ensure that the true
ML estimates are identified, we recommend running the EM algorithm using a range
of different starting values. Further technical details on the implementation of the EM
algorithm are given in Appendix A.2 of the Supplementary Material. Note that when
λ j = 0 (or Δ j = 0) the M-step equations reduce to the equations obtained assuming
SMN distributions. Particularly, this algorithm clearly generalizes the results found in
Yao et al. (2014) by taking κ(Ui ) = U−1

i and Ui ∼ Gamma( ν
2 , ν

2 ), i = 1, . . . , n.
In the next sections, simulation studies and a real dataset are presented in order to

illustrate the performance of the proposed method.
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4 Simulation experiments

In this section, we consider three simulation experiments to show the applicability of
our proposed model. Our intention is to show that the SMSN-MRM can do exactly
what it is designed for, that is, satisfactorily model data that have a structure with
serious departures from the normal assumption.

4.1 Experiment 1: Parameter recovery

In this section, we consider two scenarios for simulation in order to verify if we
can estimate the true parameter values accurately by using the proposed estimation
method. This is the first step to ensure that the estimation procedure works satisfacto-
rily. We fit the SMSN-MRM to data that were artificially generated from the following
SMSN-MRM: {

Yi = x�
i β1 + ε1, Zi1 = 1,

Yi = x�
i β2 + ε2, Zi2 = 1,

where Zi j is a component indicator of Yi with P(Zi j = 1) = p j , j = 1, 2,
x�
i = (1, xi1, xi2), such that xi1 ∼ U (0, 1) and xi2 ∼ U (−1, 1), i = 1, . . . , n, and

ε1 and ε2 follow a distribution in the family of SMSN distributions, as the assumption
given in (5).

We generated 500 random samples of size n = 500 from the SN, ST and
the SSL models with the following parameter values: β1 = (β01, β11, β21)

� =
(−1,−4,−3)�,β2 = (β02, β12, β22)

� = (3, 7, 2)�, p1 = 0.3 and ν = 3. In addi-
tion, we consider the following scenarios: scenario 1 : σ 2

1 = 2, σ 2
2 = 1, λ1 = 2 and

λ2 = 4, and scenario 2 : σ 2
1 = σ 2

2 = 2 and λ1 = λ2 = 2, i.e., γ 2
1 = γ 2

2 . We used the
ML estimation via EM algorithm for each sample, using the stopping criterion (23).
No existing program is available to estimate SMSN-MRM directly. Therefore, ML
estimation via the EM algorithm was implemented using R.

In the mixture context, the likelihood is invariant under a permutation of the class
labels in parameter vectors. Therefore, a label switching problem can occur when
some labels of the mixture classes permute (McLachlan and Peel 2000). Although
the switching of class labels is not a concern in the general course of the ML esti-
mation via the EM algorithm for studies with only one replication, it was a serious
problem in our simulation study because the same model was estimated iteratively for
500 replications per cell. To solve this problem, we chose the labels by minimizing
the distance to the true parameter values. The average values and the corresponding
standard deviations (SD) of the EM estimates across all samples were computed and
the results are presented in Tables 1 and 2. Note that all the point estimates are quite
accurate in all the considered scenarios. Thus, the results suggest that the proposed
EM-type algorithm produced satisfactory estimates.

4.2 Experiment 2: Classification

In this section, we illustrate the ability of the SMSN-MRM to fit data with a mixture
structure generated from a different family of skew distribution and we also investi-
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Table 1 Scenario 1: mean and standard deviations (SD) for EM estimates based on 500 samples from the
SMSN-MRM

Parameter SN ST SSL

Mean SD Mean SD Mean SD

β01(−1) −1.0008 0.1593 −1.0054 0.2358 −0.9902 0.1961

β11(−4) −4.0075 0.2640 −3.9835 0.3442 −4.0213 0.3144

β21(−3) −3.0036 0.1409 −3.0039 0.1697 −3.0117 0.1667

β02(3) 3.0017 0.0607 2.9863 0.0878 2.9925 0.0794

β12(7) 6.9975 0.0977 7.0080 0.1199 7.0008 0.1251

β22(2) 2.0013 0.0470 2.0037 0.0591 2.0016 0.0560

σ 2
1 (2) 1.9416 0.4546 1.9680 0.5810 1.9397 0.5642

σ 2
2 (1) 0.9820 0.1431 0.9517 0.1717 0.9589 0.1680

λ1(2) 2.1293 1.0379 2.1125 0.8213 2.0707 0.9563

λ2(4) 4.1458 1.2514 3.8421 1.0230 3.7720 1.0586

ν(3) – – 3.0142 0.4777 3.3427 1.2521

p1(0.3) 0.2998 0.0207 0.3002 0.0205 0.3008 0.0211

True values of parameters are in parentheses

Table 2 Scenario 2: mean and standard deviations (SD) for EM estimates based on 500 samples from the
SMSN-MRM

Parameter SN (γ 2
1 = γ 2

2 ) ST (γ 2
1 = γ 2

2 ) SSL (γ 2
1 = γ 2

2 )

Mean SD Mean SD Mean SD

β01(−1) −1.0091 0.1778 −1.0370 0.2346 −0.9973 0.2055

β11(−4) −3.9832 0.2958 −4.0005 0.3386 −4.0235 0.3355

β21(−3) −3.0051 0.1431 −3.0016 0.1707 −3.0057 0.1814

β02(3) 2.9882 0.1065 2.9836 0.1540 2.9915 0.1306

β12(7) 7.0193 0.1812 7.0125 0.2246 7.0082 0.2165

β22(2) 2.0093 0.0997 1.9978 0.1127 1.996 0.1100

σ 2
1 (2) 1.8959 0.4086 1.8088 0.5414 1.8030 0.5421

σ 2
2 (2) 1.9306 0.2674 1.9085 0.3992 1.8528 0.4462

λ1(2) 1.8414 0.5898 1.8268 0.5598 1.6561 0.6370

λ2(2) 1.8951 0.4690 1.9110 0.4608 1.7116 0.5301

ν(3) – – 3.0070 0.5075 3.5332 1.8907

p1(0.3) 0.2997 0.0216 0.2981 0.0219 0.3013 0.0204

True values of parameters are in parentheses

gate the ability of the SMSN-MRM to cluster observations, that is, to allocate them
into groups of observations that are similar in some sense. We know that each data
point belongs to one of G heterogeneous populations, but we do not know how to
discriminate between them. Modeling by mixture models allows clustering of the data
in terms of the estimated (posterior) probability that a single point belongs to a given
group.
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A lot of work in model-based clustering has been done using finite mixtures of
normal distributions. As the posterior probabilities ẑi j , defined in (14), can be highly
influenced by atypical observations, there have been efforts to develop robust alterna-
tives, like mixtures of Student-t distributions (see McLachlan and Peel (1998) and the
references herein). Our idea is to extend the flexibility of these models, by including
possible skewness of the related components; see the work of Liu and Lin (2014)
based on the SN-MRM.

We generated 500 samples under the following scenarios: (a) scenario 1 (Fig. 1): a
mixture of two skew-Birnbaum–Saunders regression models (see Santana et al. 2011;
Vilca et al. 2011), and (b) scenario 2 (Fig. 2): amixture of two skew-normal generalized
hyperbolicmodels (seeVilca et al. 2014). The parameter values were chosen to present
a considerable proportion of outliers and the skewness pattern. It can be seen from
Figs. 1 and 2 that the groups are poorly separated. Furthermore, note that although we
have a two component mixture, the histogram need not be bimodal.

For each sample of size n = 500, we proceed with clustering ignoring the known
true classification. Following the method proposed by Liu and Lin (2014), to assess
the quality of the classification function of each mixture model, an index measure was
used in the current study, called correct classification rate (CCR), which is based on
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Fig. 1 Experiment 2. a The scatter plot and b histogram for one of the simulated samples—scenario 1
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Fig. 2 Experiment 2. a The scatter plot and b histogram for one of the simulated samples—scenario 2
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Table 3 Experiment 2: mean of
right allocation rates for fitted
SMSN-MRM

Fitted model ACCR

Scenario 1 Scenario 2

Normal 0.5211 0.7391

SN 0.5432 0.6964

ST 0.5747 0.7674

SSL 0.5603 0.7634

Table 4 Experiment 2:
percentages of preferred models
under five conditions examined

Condition examined AIC BIC EDC ICL

Scenario 1

SN vs normal 94 77 87 96

ST vs normal 92 74 84 99

SSL vs normal 73 43 57 99

ST vs SN 62 62 62 99

SSL vs SN 17 17 17 99

Scenario 2

SN vs normal 79 21 41 51

ST vs normal 93 65 77 81

SSL vs normal 92 59 73 78

ST vs SN 91 91 91 88

SSL vs SN 88 88 88 85

the posterior probability assigned to each subject. The SMSN-MRMwere fitted using
the algorithm described in Sect. 3.1 in order to obtain the estimate of the posterior
probability that an observation yi belongs to the j th component of the mixture, i.e. ẑi j .
For sample l, l = 1, . . . , 500, we compute the number of correct allocations (CCRs)
dividedby the sample sizen, that is,ACCR = 1

500

∑500
l=1 CCRl . Table 3 shows themean

value of the correct allocation rates, where larger values indicate better classification
results.

Obviously, one expects the best classification rate when modeling with true com-
ponents (scenario 1 and scenario 2), but it is interesting to verify what happens when
we use SMSN components. Comparing with the results for the normal model, we see
that modeling using the ST or SSL distribution represents an improvement in the out-
right clustering and has a better performance, showing their robustness to discrepant
observations. Under scenario 1, the SN model showed better performance compared
to the normal model, but this did not occur in scenario 2. This fact can be explained
because the skew-normal distribution can still be affected by atypical observations
since it does not have heavy tails as is the case of the ST and SSL models.

For each sample of size n = 500, we compare the ability of some classic model
selection criteria (see Appendix A.3 of the Supplementary Material) to select the
appropriate model between the SMSN-MRM. Table 4 presents the percentages of
models selected according to the four aforementioned criteria under five conditions,
say, SN vs normal; ST vs normal; SSL vs normal; ST vs SN; SSL vs SN.
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Under scenario 1 (data generated from a mixture of two skew-Birnbaum–Saunders
regression models), comparing the asymmetric models SN, ST and SSL with the
normal (symmetrical) model, note that all criteria favor the asymmetricmodels (except
the BIC when examining SSL vs normal). Moreover, note that the ICL criterion has
the highest percentage since in this scenario the asymmetric models also performed
better in classification (see Table 3). Comparing the asymmetric models with heavy
tails (ST and SSL) to the SN model, the ST model was selected by all criteria.

Under scenario 2 (a mixture of two skew-normal generalized hyperbolic models),
comparing the asymmetric models SN, ST and SSL with normal symmetrical model,
note that all criteria favor the asymmetric models (excluding BIC and EDC criteria in
condition when examining SN vs normal). Note that when comparing SN vs normal,
the ICL favors the SN model but the number of right allocations is greater for the
normal model (see Table 3). Furthermore, for all criteria, the asymmetric models with
heavy tails (ST and SSL) fitted the data better than the SN model.

4.3 Experiment 3

In this section, first we investigate the ability of the SMSN-MRM to cluster observa-
tions and then we compare the ability of some classic procedures to choose between
the underlying SMSN-MRM. We fixed the number of components (G = 2), sample
size (n = 500) and parameter values (β1 = (−1,−4)�,β2 = (4,−6)�, σ 2

1 = σ 2
2 =

2, λ1 = λ2 = 2, i.e, γ 2
1 = γ 2

2 , and p1 = 0.3), which is a restriction suggested by
Basso et al. (2010) and Yao et al. (2014). Then, without loss of generality, we artifi-
cially generated 500 samples from a mixture regression of skew-t (ν = 3) and, for
each sample, we fitted the normal, SN, ST and the SSL models with homogeneous
nature of the covariance structure. Figure 3 shows a scatter plot and a histogram for
one of these simulated samples.

From the clustering standpoint, in order to give stronger evidence of the superiority
of the method using the SMSN-MRM family, the right number of allocations was
computed for each sample. The mean and standard deviation (SD) of right allocations
of these samples are shown in Table 5. It can be seen that the means are greater
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Fig. 3 Experiment 3. a The scatter plot and b histogram for one of the simulated samples
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Table 5 Experiment3: right allocation analysis for 500 samples artificially generated from the ST model
(γ 2

1 = γ 2
2 )

Fitted model Mean of right allocations SD of right allocations CCR

Normal (γ 2
1 = γ 2

2 ) 412.3440 109.4916 0.8247

SN (γ 2
1 = γ 2

2 ) 442.2720 58.7987 0.8845

ST (γ 2
1 = γ 2

2 ) 464.9040 39.3982 0.9298

SSL (γ 2
1 = γ 2

2 ) 457.4340 53.9565 0.9149

Table 6 Experiment 3: percentages that the true model is chosen using different criteria

Condition examined AIC BIC EDC ICL

ST (γ 2
1 = γ 2

2 ) vs normal (γ 2
1 = γ 2

2 ) 100 100 100 5

ST (γ 2
1 = γ 2

2 ) vs SN (γ 2
1 = γ 2

2 ) 99 99 99 60

ST (γ 2
1 = γ 2

2 ) vs SSL (γ 2
1 = γ 2

2 ) 99 99 99 86

and the standard deviations are smaller for the skewed/heavy-tailed SMSN-MRM, in
particular to the true model, i.e, ST model (γ 2

1 = γ 2
2 ). In addition, we present the

mean value of the correct allocation rates (ACCR). Compared with the results for the
normal model, modeling using the SN, ST or SSL distribution represents a substantial
improvement in the outright clustering. Also, the ST model (true model) outperforms
performance when compared with the SN and the SSL models, as expected.

For each fitted model, we computed the AIC, BIC, EDC and the ICL criterion (see
Appendix A.3 of the Supplementary Material). Table 6 shows the rates (percentages)
at which the true model is chosen for each criterion. Note that all the criteria have
satisfactory behavior, in that, they favor the true model, that is, the ST model with two
components, except ICL which still performs poorly. In Figure 1 of Appendix A.4
(Supplementary Material) is depicted the AIC values for each sample and model.

This simulation study shows similar results to those reported in Basso et al. (2010),
in the context of mixture modeling based on scale mixtures of skew-normal distribu-
tions. We believe that this topic about model selection deserves a more detailed and
extensive investigation, which is one of our purposes in order to extend the present
paper including a study about the choice of the (possibly) unknown number of com-
ponents, for example, and also treating the multivariate case. An overview of selection
criteria can be found in Depraetere and Vandebroek (2014), in the context of mixture
regression models based on the assumption of normality.

In addition, a real data set is analyzed, illustrating the usefulness of the proposed
method. Thus, in the following application, we use those criteria as a rough guide for
model choice.

5 Real dataset

We illustrate our proposed methods with a dataset obtained from Cohen (1984),
representing the perception of musical tones by musicians. In this tone perception
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Fig. 4 Tone perception data. a The scatter plot and b histogram of the data

experiment a pure fundamental tone with electronically generated overtones added
was played to a trained musician. The subjects were asked to tune an adjustable tone
to one octave above the fundamental tone and their perceived tone was recorded versus
the actual tone. The experiment recorded 150 trials from the samemusician. The over-
tones were determined by a stretching ratio, which is the ratio between adjusted tone
and the fundamental tone. Two separate trends clearly emerge, see Fig. 4a, which relate
to two hypotheses explored in Cohen (1984), called the interval memory hypothesis
and the partial matching hypothesis. Many articles have analyzed this dataset using a
mixture of linear regressions framework; see DeVeaux (1989), Viele and Tong (2002)
and Hunter and Young (2012). These data were analyzed recently by Yao et al. (2014),
leading them to propose a robust mixture regression using the t-distribution. Now we
revisit this datasetwith the aimof expanding the inferential results to the SMSN family.
Specifically, we focus on the SN, ST and the SSL distributions. To verify the existence
of skewness in the data, Fig. 4b presents a histogram of the data and shows there is
apparent non-normal pattern.

Table 7 presents the ML estimates of the parameters from the normal (γ 2
1 = γ 2

2 ),
Student-t (γ 2

1 = γ 2
2 ), SN (γ 2

1 =, γ 2
2 ), ST (γ 2

1 = γ 2
2 ) and the SSL (γ 2

1 = γ 2
2 ) mod-

els, along with their corresponding standard errors (SE) calculated via the following
parametric bootstrap procedure: first, using Eqs. (18)–(22), an EM estimate θ̂ was
calculated from the original data. In the parametric version of the bootstrap method,
we consider θ̂ as the true value of the parameter in order to generate B samples from
the FM-SMSN model. This estimate was also used as a starting point of the EM algo-
rithm to obtain each bootstrap sample. We considered B = 100 and took the sample
deviance values of these replications, which are the SE values shown in Table 7. As
pointed out for one anonymous referee, an important issue is whether the label switch-
ing problem occurs in the generation of the bootstrap samples. But, as observed by
byMcLachlan and Peel (2000, page 70) our choice of θ̂ as starting point in applying
the EM algorithm to each bootstrap sample prevents, in practice, further occurrences
of label switching, because it was taken as the true value of the parameter in the model
that generated the bootstrap samples. This was combined with the choice of the labels
by minimizing the distance to the true parameter values, as was done in Sect. 4. There
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Table 8 Tone perception data

Criterion Normal
(γ 2
1 = γ 2

2 )
Student-t
(γ 2
1 = γ 2

2 )
SN
(γ 2
1 = γ 2

2 )
ST
(γ 2
1 = γ 2

2 )
SSL
(γ 2
1 = γ 2

2 )

Log-likelihood 106.2549 91.1738 134.0726 201.2834 135.5021

AIC −198.5097 −168.3476 −250.1451 −382.5667 −251.0041

BIC −174.4247 −144.2625 −220.0387 −352.4604 −220.8977

EDC −194.9138 −164.7516 −245.6502 −378.0718 −246.5092

ICL 4274.6590 1138.051 6831.2690 1299.2110 1318.8930

Information criteria
Values in bold correspond to the best model

Table 9 Tone perception data

Fitted model Mean of right
allocations

SD of right
allocations

95% IC for right
allocations

Normal 130.9500 3.4275 [124.0950; 137.8050]
Student-t 131.3861 6.6302 [118.1257; 144.6465]
SN 136.7900 6.8199 [123.1502; 150.4298]
ST 141.4000 2.7303 [135.9394; 146.8606]
SSL 138.6264 3.3071 [132.0122; 145.2406]
Right allocation analysis through parametric bootstrap procedure for the dataset

are alternative methods to overcome the label switching problem, mainly from the
Bayesian perspective, like the works of Stephens (2002), Celeux et al. (2000), Yao
and Lindsay (2009), Sperrin et al. (2010) and Yao (2012). However, to the best of our
knowledge, only the work of Yao (2015) is dedicated to frequentist mixture models.

As in Basso et al. (2010), we also compare the normal, Student-t, SN, ST and the
SSL models by inspecting some information selection criteria. Comparing the models
by looking at the values of the information criteria presented in Table 8, except ICL,
we observe that the SN, ST and the SSL models outperform the normal and Student-t
models, indicating that asymmetric distributions with heavier tails provide a better fit
than the normal, Student-t and the SN distributions. In addition, it appears that the ST
model presents a better fit than all other models.

For this dataset we also adjusted the normal, Student-t, SN, ST and the SSLmodels
without considering the homogeneous nature of the variance parameter, but the ST
(γ 2

1 = γ 2
2 ) model showed the best fit compared to other models. Thus, for brevity we

present only the results for themodelswith homogeneous nature of the scale parameter.
From the clustering point of view, in order to give evidence of the superiority of the

method using the SMSN-MRM family, we carried out a parametric bootstrap experi-
ment with 100 replications. For each replication, the right number of allocations was
computed. Similar to the analysis of the simulation studies, in real data, we consider,
besides the model fit issue, only the (unsupervised) clustering of the observations in
two groups. In the context of parametric bootstrap experiment, all the subjects have

123



Robust mixture regression modeling based on scale mixtures... 393

1.5 2.0 2.5 3.0

1.
5

2.
5

3.
5

Normal

Actual tone ratio

P
er

ce
iv

ed
 to

ne
 r

at
io

1.5 2.0 2.5 3.0

1.
5

2.
5

3.
5

SN

Actual tone ratio

P
er

ce
iv

ed
 to

ne
 r

at
io

1.5 2.0 2.5 3.0

1.
5

2.
5

3.
5

ST

Actual tone ratio

P
er

ce
iv

ed
 to

ne
 r

at
io

1.5 2.0 2.5 3.0

1.
5

2.
5

3.
5

SSL

Actual tone ratio
P

er
ce

iv
ed

 to
ne

 r
at

io

Fig. 5 Tone perception data. The scatter plot of the tone perception data and the fitted mixture of SMSN
regression models

a correct diagnostic, allowing us to count the number of right classifications. The
mean and standard deviation (SD) of these bootstrap replications are shown in Table
9. Also, we present the associated 95 % normal asymptotic confidence intervals (IC).
It can be seen that the means are greater and the standard deviations are smaller for
the heavy-tailed SMSN-MRM. Figure 5 shows the scatter plots of the data set with
the four fitted models. The scatter plot for the Student-t fit is given in Appendix A.4
of the Supplementary Material.

6 Conclusions

In this work we propose a robust approach to finite mixture of regressionmodels based
on scale mixtures of skew-normal distributions. Our proposed model generalizes the
recent works of Basso et al. (2010), Yao et al. (2014) and Liu and Lin (2014). This
robust regression model simultaneously accommodates asymmetry and heavy tails,
thus allowing practitioners from different areas to analyze data in an extremely flexible
way. An ECME algorithm is developed by exploring the statistical properties of the
class considered, which can be easily implemented and coded with existing statistical
software such as the R package. Through simulation studies we have shown that this
EM-type algorithm gives reasonable estimates in an asymptotic unbiased sense as well
as the ability of the FM-SMSN distributions with heavy tails to cluster heterogeneous
data. These results indicate that the use of theSMSN-MRMoffers a better fit, protection
against outliers and more precise inference. The R code is available from us upon
request.

The proposed methods can be extended to multivariate settings, such as the recent
proposals of Galimberti and Soffritti (2014) for mixtures of multivariate Student-t
distributions, in order to model, for instance, longitudinal data as discussed in Verbeke
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and Lesaffre (1996). We intend to pursue this in future research. Another worthwhile
task is to develop a fullyBayesian inference via theMarkov chainMonteCarlomethod.

An important issue (as pointed out by a referee) is the unboundedness of the likeli-
hood function, see Cabral et al. (2012, Section 3.2). However, the absence of a global
maximizer of the likelihood is not an obstacle to apply the EM algorithm in the finite
mixtures context, as we can see in the works of Celeux et al. (1996), Peel andMcLach-
lan (2000), Fraley and Raftery (2002), Wang et al. (2004), Lin et al. (2007), Lin and
Lin (2010), Lee and Scott (2012), Lo and Gottardo (2012), Wei (2012), and Lee and
McLachlan (2014), to name a few. In general, the unboundedness problem is solved by
imposing some restriction on the parameter space or by using a maximum penalized
likelihood estimator, see Hathaway (1985, 1986) and Chen et al. (2008), for example.
See alsoYao (2010) for an alternative solution using a profile log-likelihoodmethod. A
future research topic is the extension of these methods in connection with our current
theoretical framework.
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