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Abstract We discuss future challenges in developing statistical theory for Random
Forests. In particular, we suggest that an analysis of bias and extrapolation is vital to
understanding the statistical properties of variable importance measures. We further
point to the incorporation of random forests within larger statistical models as an
important tool for high-dimensional statistical inference.
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Wewould like to congratulateGérardBiau andErwanScornet on their timely, lucid and
comprehensive overview of the established theoretical properties of Random Forests
(RFs) and related estimators. We believe that the developments they outline repre-
sent the basis for the use of ensemble methods within formal statistical inference
procedures.

Here we would like to point out what we see as the most important barriers to the
widespread use of RF-like methods within statistical analysis; these particularly being
an analysis of bias and its implications for measures of variable importance. Such an
analysis has important real-world implications as a number of highly cited applied
papers in a variety of fields have utilized importance scores for variable selection;
see, for example, results in image classification (Bosch et al. 2007), ecology (Cutler
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et al. 2007), and land cover classification (Gislason et al. 2006) to name just a few.
While RFs have performed very well at practical prediction tasks, much more theo-
retical development is needed to translate this powerful non-parametric tool into valid
scientific understanding of the domains where it is applied.

1 Analysis of bias

As the authors outline, much of the recent advances in our understanding of RFs
has been in the form of consistency, with more detailed results available for some
simplified algorithms. These results are not easy and have relied on either modifying
the RF procedure or restricting the class of models examined. While continuing to fill
out this territory is important, we also want to advocate for studies into convergence
rates and specifically into a characterization of bias for models closer to the original
RF algorithm.

The central limit theorems derived in Mentch and Hooker (2015) and Wager and
Athey (2015) center on the expected value of the RF, rather than on a generating
function; that is, if mn(x) is an RF built with Mn proper subsamples of n data points,
each of size an then

√
n

mn(x) − Emn(x)√
K 2
n Mn
n ζ1,an (x) + 1

Mn
ζan ,an (x)

d→ N (0, 1)

where the second term in the denominator provides for a correction that does not
require limn→∞ n/Mn = 0.Equivalentmultivariate limits can be produced for a vector
of values (mn(x1), . . . ,mn(xg)). Crucially, these statements allow an assessment of
variance, but not accuracy, and inference must be interpreted as being focused on the
expectation of mn .

For example,Mentch andHooker (2014) use these result to testwhether the function
produced by RFs can be represented in terms of an additive model. In its most general
form, this can be expressed as testing the hypothesis that

H0 : Emn(x, y, z) = fn(x, z) + gn(y, z).

Such procedures include tests of variable importance (predictions do not change with
respect to a variable of interest), strict additivity (by removing the variable z) as well
as more complex structures. Tests of this form are practically relevant both because
they imply independence of an effect: the effect of changing x does not depend on y,
and because they provide an indication of which components to jointly examine when
trying to interpret mn in terms of visualisable effects (e.g., Hooker 2004).

These inferential questions are necessarily about Emn(x) unless the bias reduces at
a faster than

√
n rate.While these tests are still valuable, particularly for interpretation,

the removal of this qualification would substantially broaden their applicability. We
cannot expect convergence this fast (Stone 1980, provides a limiting result; Biau and
Scornet also quote rates for some simplified algorithms) and thus ways to character-
ize, and potentially correct for, bias are particularly important. A heuristic correction
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based on a residual bootstrap was proposed in Hooker and Mentch (2015) which also
showed significant improvements in predictive accuracy. However, we do not expect
the procedure to provide an improvement in rates.

A full study of bias should include not just rates, but a characterization of the
dependence of bias on the covariate distribution. In particular, as we discuss in more
detail below, the extrapolation behavior of RFs should be examined. Here we provide
a heuristic claim that trees extrapolate as additive models constructed from marginal
components—that is by averaging regressions made using subsets of the covariates.
Specifically, we imagine a data set that lies close to a d-dimensional manifold M
within R

p. At any point far from M, predictions will be obtained from leaves which
all have to intersectM. We expect leaves to involve splits of at most d variables, since
splitting more that d variables will yield marginal information. The prediction in such
a leaf is then a local average over the manifold, whichever d covariates are employed.
The overall prediction is then given in terms of averages of each part of the manifold
that can be reached from our prediction point by moves along d axes.

This heuristic is demonstrated in Fig. 1. Here we have simulated a bivariate set
of covariate values of size 200 with uniform marginals and a Gaussian copula with
correlation parameter 0.9. We then defined a noiseless response to be Y = X1 and
obtained an RF using these data. In Fig. 1 we examine the match between these data
and the truemodel alongwith a heuristic model given by the average ofmarginal linear
regressions on X1 and X2, estimated separately. Here, our RF model gives responses
close to the generating model near the data, but increasingly mimics the average of
marginals model in regions far from the observations. The lower left panel overlays the
splits from the first six trees in the RF.We see splits extending from the data to the edge
of covariate space, but using one or other axes depending on the tree, giving credence
to our heuristic expectation. Close to the data, splits are much shorter, appropriately
mimicking the response.

This explanation is very much heuristic and must be modified to account for sev-
eral factors: this RF splits more frequently on X1 than X2, for example, meaning the
approximation away from the data is best described by a weighted average of mar-
ginal regressions, and we do not have a description of behavior in areas with low (as
opposed to no) data density. Nonetheless, we believe this simple example highlights
an important need for further study; as we will show below, these behaviors also have
consequences for using RF models for understanding and inference.

2 Implications for variable importance

A crucial implication of the observations above is in understanding the effect of the
covariate distribution on various measures of variable importance. While diagnostic
tools have generally been considered secondary to predictive performance, measures
like variable importance have been a significant factor in the popularity ofRFs and have
been used in a diverse array of fields such as image classification (Bosch et al. 2007),
ecology (Cutler et al. 2007), and drug efficacy (Gunther et al. 2003). Nonetheless,
a body of literature has demonstrated that these measures can be misleading in the
presence of correlated covariates.
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Fig. 2 Left a set of bivariate covariates (asterisk) and the corresponding points used to calculate MDA.
Right results of an experiment in variable importance measures. We provide the average rank of the first
out of seven independent covariates by sample size (x-axis) and a Gaussian copula correlation parameter
(labels) between the first and second covariates

We believe that the correct explanation for this can be found in Hooker (2007); that
measures such as Mean Decrease in Accuracy (MDA) unduly rely on the behavior
of RFs as they extrapolate. This is because the variable importance of X1, say, is
based on value of the function measured by permuting its values; meaning we average
predictive accuracy over a covariate distribution given by the product of the marginal
distributions of X1 and X−1. This is illustrated in the left panel of Fig. 2 where we
have plotted the measurement points used for variable importance scores from our
example above, along with the original data distribution.

This explanation is in contrast to that given in Strobl et al. (2008) which identifies
variable importance as measuring the marginal importance of a variable. If this were
the case, we would expect to see consistently poor variable importance even with large
data. A simple experiment suffices to demonstrate the differences between these expla-
nations: we generated seven dimensional covariates from a uniform distribution with
correlation induced in the first two dimensions via a Gaussian copula and calculated
a response from the model

Y = 0.8X1 + 0.8X2 +
7∑

j=3

X j

with no noise process. Here, X1 and X2 should be registered as less important than
the remaining variables, but correlation between them will induce larger perceived
marginal effects and also produce the extrapolation described above. The right panel
of Fig. 2 provides the average rank (higher = more important) in MDA of X1 over 100
simulations at a variety of data sizes and correlation parameters. Here we observe that
at high correlations, X1 tends to be erroneously awarded one of the highest importances
of all seven covariates. At lower correlations, however, while the average rank of X1’s
MDA starts higher than the average covariate, it decreases as the data size grows. We
contend that this behavior is a consequence of larger sample sizes “filling out” the
covariate space, leading to lower extrapolation.
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Hooker (2007) proposed a weighting scheme to correct for this behavior, based on
the density of covariates. However, a fuller analysis of bias will provide better insight
into which values of the covariates may be reasonably used to provide inference
or insight. We note that formal hypothesis tests proposed in Mentch and Hooker
(2014) can readily accommodate weighting query points for RFs. We expect that an
improved understanding of extrapolation will play an important role in providing valid
statistical procedures. We also note that the conditional variable importance measures
in Strobl et al. (2008) would still be expected to be effective here because they avoid
extrapolation, but will not allow tests of more complex structure to be carried out.

3 Extensions to boosting and semiparametric regression

Afurther important direction of theoretical research is the incorporation ofRFmethods
into larger statisticalmodels. This has the potential both to extend the class of problems
that can be addressed via RF-typemethods aswell as to avoid some of the issues of bias
discussed above. An initial result in Wager and Athey (2015) shows nicely that RFs,
when used to model nuisance components can still yield valid (i.e., asymptotically
unbiased) inference about other parts of a model obtained from RF residuals. This
is commonly found in partially linear models: including a non-parametric term in a
model still allows inference about parametric components of the model; see Li and
Racine (2007), for example. We speculate that equivalent results can be obtained for
models of the form

y = xβ + f (z) + ε

where f (z) is modeled by an ensemble of decision trees that use covariates z.
Of course, obtaining these types ofmodel requiresmore radical changes toRFfitting

algorithms. Such models can be fit using boosting methods (see Fahrmeir et al. 2013,
for parametric models) or via backfitting schemes (Sorokina et al. 2007; Lou et al.
2013). These, of course, will all require new theoretical development, for consistency,
rates, and central limit theorems.
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