Intheembeddedcomputersystemdomain,MPSoCsystemshavebecomeincreasingly popular due to the ever-increasing performance demands of modern embedded applications. The number of processing elements in these MPSoCs also steadily increases. Whereas current MPSoCs still contain a limited number of processing elements, future MPSoCs will feature tens up to hundreds of (heterogeneous) processing elements that are all integrated on a single chip. On these future large-scale MPSoC systems, the mapping of applications onto the hardware resources plays an important role to fully explore the parallelism of applications. In this article, a hierarchical run-time adaptive resource allocation framework which uses an intelligent task remapping approach is proposed to improve the system performance for large-scale MPSoCs
Merupakan Unit Pendukung Akademis (UPA) yang bersama-sama dengan unit lain melaksanakan Tri Dharma Perguruan Tinggi (PT) melalui menghimpun, memilih, mengolah, merawat serta
melayankan sumber informasi kepada civitas akademika Universitas Jember khususnya dan masyarakat akademis pada umumnya.