OPAC (Online Public Access Catalog)
Pencarian Koleksi UPA Perpustakaan
start it by typing one or more keywords for title, author or subject
Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
Weian Guo 1 - Personal Name
Ming Chen 1 - Personal Name
Lei Wang 2 - Personal Name
Qidi Wu 2 - Personal Name
multi-objective evolutionary algorithm (HMOEA). In this framework, more than one MOEAs are employed, which is more adaptive to different problems. In HMOEA, the popu- lation will be randomly divided into several groups. In each group, a selected MOEA will be implemented. Therefore in the framework, the number of groups is equal to the number of the employed MOEAs. The size of each group, namely the size of sub-population in each group, is adjusted accord- ing to the corresponding MOEA’s performance. If a MOEA performs well, its corresponding group will have a large size group, which means the MOEA obtains more computational resources. On the contrary, if a MOEA has a poor perfor- mance in current generation, its corresponding group will
obtain only a few individuals. Although a MOEA does not perform very well in current generation, the framework will not abandon this MOEA, but provide it a group that has predefined small size. The reason is that an involvement of different MOEAs will increase the diversity of algorithms in the hyper framework, which is helpful for HMOEA to avoid local optima and also can help HMOEA be adaptive to dif- ferent phases in the whole optimization process. To compare
MOEAs’ performances, coverage rate (CR) metric is used to evaluate the quality of MOEA and therefore decides the size of group for each MOEA. In numerical experiments, ZDT benchmarks are employed to test the proposed hyper frame- work. Several classic MOEAs are also used in comparisons.
According to the comparison results, HMOEA can achieve very competitive performances, which demonstrates that the design is feasible and effective to solve MOPs.
Series Title
-
Call Number
-
Publisher
: ,
Collation
-
Language
ISBN/ISSN
-
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Coverage rate
Multi-objective optimization problems ·
Hyper multi-objective evolutionary algorithm
Group
Specific Detail Info
-
Statement of Responsibility
-
New collection + Update
About Us
UPA Perpustakaan
Merupakan Unit Pendukung Akademis (UPA) yang bersama-sama dengan unit lain melaksanakan Tri Dharma Perguruan Tinggi (PT) melalui menghimpun, memilih, mengolah, merawat serta melayankan sumber informasi kepada civitas akademika Universitas Jember khususnya dan masyarakat akademis pada umumnya.
UPA Perpustakaan Universitas Jember sebagai perpustakaan modern dengan layanan prima yang mampu menunjang visi Universitas Jember.
Total Koleksi
Total Item
Total Anggota
Total Pustakawan
Aplikasi Android
Our Services
Help Desk and Service Support UPA Perpustakaan
Layanan penyerahan Skripsi, Laporan, Thesis, dan Disertasi, Hubungi kami dengan tab/klik untuk mendapatkan informasi lebih lanjut
Layanan Pengembangan dan Kerjasama, Hubungi kami dengan tab/klik untuk mendapatkan informasi lebih lanjut
Layanan peminjaman dan pengembalian koleksi sirkulasi, Hubungi kami dengan tab/klik untuk mendapatkan informasi lebih lanjut
Layanan koleksi Referensi, koleksi Berkala, dan koleksi Skripsi, Hubungi kami dengan tab/klik untuk mendapatkan informasi lebih lanjut
Layanan Karya Deposit Dosen, Hubungi kami dengan tab/klik untuk mendapatkan informasi lebih lanjut
Layanan Registrasi, Hubungi kami dengan tab/klik untuk mendapatkan informasi lebih lanjut